Abstract
We study probability measures corresponding to families of abelian varieties over a finite field. These measures play an important role in the Tsfasman–Vlăduţ theory of asymptotic zeta-functions defining completely the limit zeta-function of the family. J.-P. Serre, using results of R.M. Robinson on conjugate algebraic integers, described the possible set of measures than can correspond to families of abelian varieties over a finite field. The problem whether all such measures actually occur was left open. Moreover, Serre supposed that not all such measures correspond to abelian varieties (for example, the Lebesgue measure on a segment). Here we settle Serre's problem proving that Serre conditions are sufficient, and thus describe completely the set of measures corresponding to abelian varieties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have