Abstract
In this work, we introduce a degenerating PDE system with a time-depending domain for complete damage processes under time-varying Dirichlet boundary conditions. The evolution of the system is described by a doubly nonlinear differential inclusion for the damage process and a quasi-static balance equation for the displacement field which are strongly nonlinearly coupled. In our proposed model, the material may completely disintegrate which is indispensable for a realistic modeling of damage processes in elastic materials. Complete damage theories lead to several mathematical problems since for instance coercivity properties of the free energy are lost and, therefore, several difficulties arise. For the introduced complete damage model, we propose a classical formulation and a corresponding suitable weak formulation in an $SBV$-framework. The main aim is to prove existence of weak solutions for the introduced degenerating model. In addition, we show that the classical differential inclusion can be regained from the notion of weak solutions under certain regularity assumptions which is a novelty in the theory of complete damage models of this type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.