Abstract

We develop a new semi-analytical method for solving multilayer diffusion problems with time-varying external boundary conditions and general internal boundary conditions at the interfaces between adjacent layers. The convergence rate of the semi-analytical method, relative to the number of eigenvalues, is investigated and the effect of varying the interface conditions on the solution behaviour is explored. Numerical experiments demonstrate that solutions can be computed using the new semi-analytical method that are more accurate and more efficient than the unified transform method of Sheils [Appl. Math. Model., 46:450–464, 2017]. Furthermore, unlike classical analytical solutions and the unified transform method, only the new semi-analytical method is able to correctly treat problems with both time-varying external boundary conditions and a large number of layers. The paper is concluded by replicating solutions to several important industrial, environmental and biological applications previously reported in the literature, demonstrating the wide applicability of the work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call