Abstract
AbstractThe notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph , an incompatibility system over is a family such that for every , is a family of edge pairs with . Moreover, for an integer , we say is ‐bounded if for every vertex and its incident edge , there are at most pairs in containing . Krivelevich, Lee and Sudakov proved that there is an universal constant such that for every Dirac graph and every ‐bounded incompatibility system over , there exists a Hamilton cycle where every pair of adjacent edges of satisfies for . This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called compatible (with respect to ). We study high powers of Hamilton cycles in this context and show that for every and , there exists a constant such that for sufficiently large and every ‐bounded incompatibility system over an ‐vertex graph with , there exists a compatible th power of a Hamilton cycle in . Moreover, we give a ‐bounded construction which has minimum degree and contains no compatible th power of a Hamilton cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.