Abstract

AbstractWe present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large “bipartite hole” (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chvátal and Erdős. In detail, an ‐bipartite‐hole in a graph G consists of two disjoint sets of vertices S and T with and such that there are no edges between S and T; and is the maximum integer r such that G contains an ‐bipartite‐hole for every pair of nonnegative integers s and t with . Our central theorem is that a graph G with at least three vertices is Hamiltonian if its minimum degree is at least . From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of k edge‐disjoint Hamilton cycles. We see that for dense random graphs , the probability of failing to contain many edge‐disjoint Hamilton cycles is . Finally, we discuss the complexity of calculating and approximating .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call