Abstract

Abstract. The reconstructed surface-temperature time series from boreholes in Antarctica have significantly contributed to our understanding of multidecadal and centennial temperature changes and thus provide a good way to evaluate the ability of climate models to reproduce low-frequency climate variability. However, up to now, there has not been any systematic model–data comparison based on temperature from boreholes at a regional or local scale in Antarctica. Here, we discuss two different ways to perform such a comparison using borehole measurements and the corresponding reconstructions of surface temperature at the West Antarctic Ice Sheet (WAIS) Divide, Larissa, Mill Island, and Styx Glacier in Antarctica. The standard approach is to compare the surface temperature simulated by the climate model at the grid cell closest to each site with the reconstructions in the time domain derived from the borehole temperature observations. Although some characteristics of the reconstructions, for instance the nonuniform smoothing, limit to some extent the model–data comparison, several robust features can be evaluated. In addition, a more direct model–data comparison based on the temperature measured in the boreholes is conducted using a forward model that simulates explicitly the subsurface temperature profiles when driven with climate model outputs. This comparison in the depth domain is not only generally consistent with observations made in the time domain but also provides information that cannot easily be inferred from the comparison in the time domain. The major results from these comparisons are used to derive metrics that can be applied for future model–data comparison. We also describe the spatial representativity of the sites chosen for the metrics. The long-term cooling trend in West Antarctica from 1000 to 1600 CE (−1.0 ∘C) is generally reproduced by the models but often with a weaker amplitude. The 19th century cooling in the Antarctic Peninsula (−0.94 ∘C) is not reproduced by any of the models, which tend to show warming instead. The trend over the last 50 years is generally well reproduced in West Antarctica and at Larissa (Antarctic Peninsula) but overestimated at other sites. The wide range of simulated trends indicates the importance of internal variability in the observed trends and shows the value of model–data comparison to investigate the response to forcings.

Highlights

  • Most of the world has been steadily warming over the last few decades, the temperature trend in Antarctica is not homogeneous (Jones et al, 2016)

  • In order to ensure that the climate model results have the same mean over the reference period as the reconstruction, we applied a very simple, constant correction to remove the mean bias of the climate model results as shown in the Fig. 3

  • The successful application here of a forward model driven with climate model results provides an additional way to analyze jointly model results and borehole temperature measurements

Read more

Summary

Introduction

Most of the world has been steadily warming over the last few decades, the temperature trend in Antarctica is not homogeneous (Jones et al, 2016). Several syntheses relying on instrumental air temperature records have shown a large recent warming over the Antarctic Peninsula (AP) and parts of West Antarctica, but the trend for the other parts of the Antarctic continent remains less clear (Chapman and Walsh, 2007; Nicolas and Bromwich, 2014; Steig et al, 2009; Turner et al, 2005). Z. Lyu et al.: Comparison of observed borehole temperatures in Antarctica origin of recent changes are still uncertain (Goosse et al, 2012; Jones et al, 2016; Nicolas and Bromwich, 2014)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.