Abstract

In the pre-big data era, many traditional databases supported spatial queries via spatial indexes. However, modern applications are seeing a rapid increase of the volume and ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big data systems as their storage structure in order to support write-intensive large-volume workloads, which are usually only optimized for single-dimensional data. Research has studied how spatial indexes can be supported on LSM systems, but focused mainly on the local index organization, that is, how data is organized inside a single LSM component. This paper studies various aspects of LSM spatial indexing, including spatial merge policies, which determine when and how spatial components are merged. Three stack-based and one leveled merge policies have been studied, which have been implemented on a common big data system Apache AsterixDB. The write and read performance on various workloads is evaluated, and our findings and recommendations are discussed. A key finding is that Leveled policies underperform other stack-based merge policies for most types of spatial workloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.