Abstract

The construction industry substantially contributes to the economic growth of a country. However, it records a large number of workplace injuries and fatalities annually due to its hesitant adoption of automated safety monitoring systems. To address this critical concern, this study presents a real-time monitoring approach that uses the Internet of Things and ensemble learning. This study leverages wearable sensor technology, such as photoplethysmography and electroencephalography sensors, to continuously track the physiological parameters of construction workers. The sensor data is processed using an ensemble learning approach called the ChronoEnsemble Fatigue Analysis System (CEFAS), comprising deep autoregressive and temporal fusion transformer models, to accurately predict potential physical and mental fatigue. Comprehensive evaluation metrics, including mean square error, mean absolute scaled error, and symmetric mean absolute percentage error, demonstrated the superior prediction accuracy and reliability of the proposed model compared to standalone models. The ensemble learning model exhibited remarkable precision in predicting physical and mental fatigue, as evidenced by the mean square errors of 0.0008 and 0.0033, respectively. The proposed model promptly recognizes potential hazards and irregularities, considerably enhancing worker safety and reducing on-site risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.