Abstract

We demonstrate in the present study that self-consistent calculations based on the self-energy functional theory (SFT) are possible for the electronic structure of realistic systems in the context of quantum chemistry. We describe the procedure of a self-consistent SFT calculation in detail and perform the calculations for isolated 3d transition metal atoms from V to Cu as a preliminary study. We compare the one-particle Green's functions obtained in this way and those obtained from the coupled-cluster singles and doubles method. Although the SFT calculation starts from the spin-unpolarized Hartree-Fock state for each of the target systems, the self-consistency loop correctly leads to degenerate spin-polarized ground states. We examine the spectral functions in detail to find their commonalities and differences among the atoms by paying attention to the characteristics of the two approaches. It is demonstrated via the two approaches that calculations based on the density functional theory (DFT) can fail in predicting the orbital energy spectra for spherically symmetric systems. It is found that the two methods are quite reliable and useful beyond DFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.