Abstract

The present study investigated the effects of Hot Isostatic Pressing (HIP) on the fatigue performance of Laser Powder Bed Fusion (L-PBF) Ti–6Al–4V alloy under both 4-point bending and uniaxial testing. Three HIP-cycles were examined: standard, low temperature/high pressure (LTHP), and super beta. Moreover, an annealed heat treatment group was incorporated to compare against the HIP groups. The material microstructure was analyzed and compared across the heat treatments during the study, which showed the presence of α′ martensites, α+β Widmanstätten, and coarse equiaxed grains. Similarly, tensile and hardness testing were implemented to study the mechanical properties, where due to the effects of the HIP treatments, higher ductility but lower hardness values were recorded. Furthermore, fracture morphologies and stress-life (cycles-to-failure) (S–N) curves of the Ti–6Al–4V specimens concerning the fatigue behavior were analyzed. The HIP treatment groups behaved similarly during 4-point bending and uniaxial testing, with the LTHP obtaining a superior fatigue life behavior, followed by the standard and super beta HIP groups. In addition, the efficacy of HIP to reduce pores showed better results in the 4-point bending specimens, leading to few defects as fatigue initiators in contrast to the uniaxial specimens. Fractography results suggested that defects and microstructural features acting as fatigue crack initiators (FCI) govern the fracture behavior of uniaxial specimens. In contrast, only the presence of microstructural features controls the 4-point bending failure behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.