Abstract
Peristaltic pumping is used in membrane applications where high and sterile sealing is required. However, control is difficult due to the pulsating pump characteristics and the time-varying properties of the system. In this work, three artificial intelligence control strategies (artificial neural networks (ANN), fuzzy logic expert systems, and fuzzy-integrated local models) were used to regulate transmembrane pressure and crossflow velocity in a microfiltration system under high fouling conditions. A pilot plant was used to obtain the necessary data to identify the AI models and to test the controllers. Humic acid was employed as a foulant, and cleaning-in-place with NaOH was used to restore the membrane state. Several starting operating points were studied and setpoint changes were performed to study the plant dynamics under different control strategies. The results showed that the control approaches were able to control the membrane system, but significant differences in the dynamics were observed. The ANN control was able to achieve the specifications but showed poor dynamics. Expert control was fast but showed problems in different working areas. Local models required less data than ANN, achieving high accuracy and robustness. Therefore, the technique to be used will depend on the available information and the application dynamics requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.