Abstract

Membrane filtration is one of the preferred choices for petroleum wastewater disposal due to its simplicity and low energy consumption. In this paper, a biodegradable superhydrophobic membrane based on loofah and rice straw (LF-RS) was prepared and modified with dodecyltriethoxysilane to improve its stability, morphology, and performance. The membrane showed an efficiency of 99.06% for oil/water separation with an average water flux of 2057.37 Lm−2h−1 and a tensile strength of 11.19 MPa. The tensile strength of the LF-RS membrane was 322.47% higher than that of the PVDF membrane and 126.58% higher than that of the commercially available nitrocellulose membrane. Through molecular simulations, we showed a 96.3% reduction in interaction energy between water and membrane post-modification, which is beneficial for increasing the contact angle and separation performance. This study provides an option for the large-scale, cost-effective fabrication of eco-friendly membranes for pollutant removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.