Abstract

Campylobacter jejuni has become the most common bacterial cause of human gastroenteritis worldwide. Rapid, discriminatory typing methods are required to identify potential clusters of infections. The major disadvantage of the well-evaluated and widely used Penner heat-stable serotyping method is the high level of nontypeability. The correlation of the types determined by the Penner heat-stable serotyping method and PCR-based restriction fragment length polymorphism (RFLP) analysis of the lipooligosaccharide (LOS) biosynthesis genes of C. jejuni was studied with 149 C. jejuni strains. Of these strains, 79 were patient strains belonging to 25 Penner serotypes, 60 were nontypeable patient strains, and 10 were reference strains. A 9.6-kb DNA fragment of the LOS gene cluster was amplified and digested with the restriction enzymes HhaI and DdeI. Altogether, 39 different RFLP types (including 30 HhaI profiles and 32 DdeI profiles) were identified. Type Hh1Dd1 was the most common type, with 36% of the strains and strains of 12 serotypes being of this type. A high level of discrimination was obtained, and a correlation between the Penner serotypes and the PCR-RFLP types could be seen. Also, variation in the LOS biosynthesis genes within a single Penner serotype was found. Although the PCR-RFLP method may not be sufficient to compensate for Penner serotyping, it can give valuable information about nontypeable strains and further characterize strains of common serotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.