Abstract

Cunninghamia lanceolate (Lamb.) Hook. (Chinese fir) is one of the most important wood-producing species, supplying ~20% of commercial timber by plantations in China. However, the genetic potential of the bred variety is limited by soil degrading in the long term and requiring continuous replanting, and especially the shortage and supply of active and efficient phosphorus. Recently, great attention has been paid to the genotypic variation in phosphorus conversion and utilization efficiency by tree breeders. In this study, the morphological characteristics were used to evaluate the Chinese fir clonal Pi-efficiency stress. A Pi-tolerant clone and a Pi-sensitive clone were selected for RNA sequencing, respectively. In addition, gene function annotation and weighted correlation network analysis (WGCNA) were performed. A total of 60 hub genes were selected, combining phosphate accumulation under Pi-deficiency stress. We also used RNA-seq data to analyze the differences in the response of Pi-sensitive clones and Pi-tolerant clones to Pi-deficiency stress, and real-time quantitative polymerase chain reaction (RT-PCR) analyses were used to test the validity of transcriptome data. The present study provided new insights into the molecular mechanisms of Pi-efficient utilization in Chinese fir clones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call