Abstract

The working mechanism of a geotechnical structure can be understood from the deformations and the vertical stresses in the soil media. This article attempts to study the deformation, vertical stress development, and distribution of improved clay deposits carrying a single isolated footing. Through PLAXIS 3D software, numerical analyses were conducted for the ground improvement methods, such as the geogrid reinforced sand-bed (GRSB) and ordinary and geogrid encased stone column installation (OSC and GESC). In GRSB, the results show that the stresses were maximum at the sand–clay interface at a depth of 0.67 B (B—footing width). It is proposed to place an additional layer of geogrid at the interface, and it must be within the critical depth, i.e., the width of the footing. Furthermore, for the current study, the stiffness of the geogrid in the sand layer greater than 500 kN/m was insignificant in soil improvement, whereas the optimum axial stiffness of the stone column encasement was 1,000 kN/m based on the stress concentration factor. The stone column installation improved the clay layer even below the depth of 0.67 B, improving the capacity of clay to carry higher vertical stresses on par with the stone columns. The GRSB carried higher vertical stresses than the unimproved ground. However, the OSC and GESC could carry vertical stresses higher than the GRSB. This knowledge can allow the practitioners to decide the depth of placement of the reinforcement and also to choose an alternate if one method is not feasible for the site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call