Abstract

Stone columns develop their load carrying capacity from the circumferential confinement provided by the surrounding soils. In very soft soils, the circumferential confinement offered by the surrounding soft soil may not be sufficient to develop the required load carrying capacity. Hence a vertical confinement would yield a better result. The load carrying capacity is further increased with the addition of a sand bed over the stone columns. In the present study, a series of laboratory model tests on an unreinforced sand bed (USB) and a geogrid-reinforced sand bed (GRSB) placed over a group of vertically encased stone columns (VESC) floating in soft clay and their numerical simulations were conducted. Three-dimensional numerical simulations were performed using a finite element package ABAQUS 6.12. In the finite element analysis, geogrid and geotextile were modeled as an elasto-plastic material. As compared to unreinforced clay bed, an 8.45 fold increase in bearing capacity was observed with the provision of a GRSB over VESC. The optimum thickness of USB and GRSB was found to be 0.2 times and 0.15 times the diameter of the footing. A considerable decrease in bulging of columns was also noticed with the provision of a GRSB over VESC. Both the improvement factor and stress concentration ratio of VESC with GRSB showed an increasing trend with an increase in the settlement. It was observed that the optimum length of stone columns and the optimum depth of encasement of the group of floating VESC with GRSB are 6 times and about 3 times the diameter of the column respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call