Abstract

Ta2O5 and Nb2O5 films are deposited by conventional e-beam method under different electron beam currents. The optical transmittance, chemical composition, absorption, scattering, surface topography and laser-induced damage threshold (LIDT) of the films are comparatively studied. It is shown that the increase of electron beam current results in a decrease of the optical transmittance and stoichiometry, whereas it increases the absorption, scattering and rms roughness for both Ta2O5, and Nb2O5 films. However, the LIDT increases first and then decreases with the increase of electron beam current. In addition, the annealing improves the optical transmittance, stoichiometry and LIDT for the two kinds of films. Both the effects of electron beam current and annealing on the LIDT can be mainly attributed to three factors: substoichiometric defects, structural defects and adhesive force. Furthermore, the comparative results indicate that the laser damage resistance of Ta2O5 is lower than that of Nb2O5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.