Abstract

Ta2O5 and Nb2O5 films are deposited on BK7 glass substrates using an electron beam evaporation method and are annealed at 673 K in the air. In this letter, comparative studies of the optical transmittance, microstructure, chemical composition, optical absorption, and laser-induced damage threshold (LIDT) of the two films are conducted. Findings indicate that the substoichiometric defect is very harmful to the laser damage resistance of Ta2O5 and Nb2O5 films. The decrease of absorption improves the LIDT in films deposited by the same material. However, although the absorption of the Ta2O5 single layer is less than that of the Nb2O5 single layer, the LIDT of the former is lower than that of the latter. High-reflective (HR) coatings have a higher LIDT than single layers due to the thermal dissipation of the SiO2 layers and the decreased electric field intensity (EFI). In addition, the Nb2O5 HR coating achieves the highest LIDT at 25.6 J/cm2 in both single layers and HR coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call