Abstract

• We examined the proteomes of the recently formed natural allopolyploid Tragopogon mirus and its diploid parents (T. dubius, T. porrifolius), as well as a diploid F(1) hybrid and synthetic T. mirus. • Analyses using iTRAQ LC-MS/MS technology identified 476 proteins produced by all three species. Of these, 408 proteins showed quantitative additivity of the two parental profiles in T. mirus (both natural and synthetic); 68 proteins were quantitatively differentially expressed. • Comparison of F(1) hybrid, and synthetic and natural polyploid T. mirus with the parental diploid species revealed 32 protein expression changes associated with hybridization, 22 with genome doubling and 14 that had occurred since the origin of T. mirus c. 80 yr ago. We found six proteins with novel expression; this phenomenon appears to start in the F(1) hybrid and results from post-translational modifications. • Our results indicate that the impact of hybridization on the proteome is more important than is polyploidization. Furthermore, two cases of homeolog-specific expression in T. mirus suggest that silencing in T. mirus was not associated with hybridization itself, but occurred subsequent to both hybridization and polyploidization. This study has shown the utility of proteomics in the analysis of the evolutionary consequences of polyploidy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.