Abstract

Redistribution of precipitation across seasons is a widespread phenomenon affecting dryland ecosystems globally. However, the impacts of shifting seasonal precipitation patterns on carbon (C) cycling and sequestration in dryland ecosystems remain poorly understood. In this study, we conducted a 10-yr (2013-2022) field manipulative experiment that altered the timing of growing-season precipitation peaks in a semi-arid grassland. We found that the delayed precipitation peak suppressed plant growth and thus reduced gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity due to middle growing-season water stress. Surprisingly, shifting more precipitation to the early growing season can advance plant development, increase the dominance of drought-tolerant forbs, and thus compensate for the negative impacts of middle growing-season water stress on ecosystem C cycling, leading to a neutral change in grassland C sink. Our findings indicate that greater precipitation and plant development in spring could act as a crucial mechanism, maintaining plant growth and stabilizing ecosystem C sink. This underscores the urgent need to incorporate precipitation seasonality into Earth system models, which is crucial for improving projections of terrestrial C cycling and sequestration under future climate change scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.