Abstract
To find out differences and similarities in phenotypic, proliferative, and trans-differentiation properties of stem cells isolated from pulp of deciduous (SHEDs) and permanent (DPSCs) teeth with human bone marrow stem cells (BMSCs), we examined the expression of mesenchymal and embryonic stem cell markers in relation to the proliferation and osteogenic differentiation potentials of these cells. In this way, after isolating SHEDs, DPSCs, and BMSCs, cell proliferation was evaluated and population doubling time was calculated accordingly. Expression patterns of mesenchymal, hematopoietic, and embryonic stem cell markers were assessed followed by examining differentiation potential toward osseous tissue through alizarin red staining and qRT-PCR. Based on the results, the proliferation rates of SHEDs and DPSCs were significantly higher than that of BMSCs (P<0.0001). High expression of mesenchymal stem cell markers and weak expression of hematopoietic markers were observed in all the three groups. The mean expression of OCT-4 was significantly higher in SHEDs and DPSCs (P=0.028), while the expression of SSEA-4 was lower (P=0.006) compared to BMSCs. Osteogenic differentiation potential of SHEDs was greater than DPSCs; however, it was lower than that of BMSCs. Conclusively, the distinctive immunophenotyping, proliferation rate, and differentiation pattern of SHEDs and DPSCs discriminate these cells from BMSCs. Furthermore, dissimilarity in differentiation potential is evidence implying that SHEDs might be more primitive stem cell population compared to DPSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have