Abstract
The 3ɸ - Squirrel Cage Induction Motor (SCIM) used in industrial are prone to thermal breakdown due to its working conditions. Losses in the motor cause rise in temperature. Losses estimation of the 3ɸ - SCIM play a very important role in analyzing the electrical and thermal performances. In this paper a Lumped Parameter Thermal Model (LPTM) and Finite Element Method (FEM) is used to estimate the temperature rise in 3ɸ - SCIM. The temperature rise is obtained considering loss, with load variation between no-load to full load conditions, this enables to analyse the application of induction motor in mines. In addition to that a comparative analysis is carried out between Lumped Parameter Thermal Model (LPTM) and Finite Element Method (FEM) to determine the effective method to estimate temperature rise and determine the relative percentage error in temperature rise at various elements of 3ɸ - SCIM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.