Abstract

State-of-the-art FinFETs exhibit the Gate-Induced-Drain-Leakage (GIDL) current, which cannot be attributed entirely to conventional Band-to-Band Tunneling (BTBT) physics for GIDL [1]. For the strained FinFET technology, the Trap-Assisted Tunneling (TAT) is the governing physical mechanism for most GIDL leakage due to a low gate induced vertical field in the gate-drain overlap region. This work presents the TAT-based GIDL compact model, and the developed model is validated with measurement data and TCAD simulations. The model is implemented as part of the industry-standard BSIM-CMG compact model for FinFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.