Abstract

Single-wall carbon nanotubes (SWCNTs) have been proposed for very large scale integration interconnect applications and their modeling is carried out using the multiconductor transmission line (MTL) formulation. Their time-domain analysis has some simulation issues related to the high number of SWCNTs within each bundle, which results in a highly complex model and loss of accuracy in the case of long interconnects. In recent years, several techniques have been proposed to reduce the complexity of the model whose accuracy decreases as the interconnection length increases. This paper presents a rigorous new technique to generate accurate reduced-order models of large SWCNT interconnects. The frequency response of the MTL is computed by using the spectral form of the dyadic Green's function of the 1-D propagation problem and the model complexity is reduced using rational-model identification techniques. The proposed approach is validated by numerical results involving hundreds of SWCNTs, which confirm its capability of reducing the complexity of the model, while preserving accuracy over a wide frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.