Abstract
PurposeA community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on community detection. Despite the traditional spectral clustering and statistical inference methods, deep learning techniques for community detection have grown in popularity due to their ease of processing high-dimensional network data. Graph convolutional neural networks (GCNNs) have received much attention recently and have developed into a potential and ubiquitous method for directly detecting communities on graphs. Inspired by the promising results of graph convolutional networks (GCNs) in analyzing graph structure data, a novel community graph convolutional network (CommunityGCN) as a semi-supervised node classification model has been proposed and compared with recent baseline methods graph attention network (GAT), GCN-based technique for unsupervised community detection and Markov random fields combined with graph convolutional network (MRFasGCN).Design/methodology/approachThis work presents the method for identifying communities that combines the notion of node classification via message passing with the architecture of a semi-supervised graph neural network. Six benchmark datasets, namely, Cora, CiteSeer, ACM, Karate, IMDB and Facebook, have been used in the experimentation.FindingsIn the first set of experiments, the scaled normalized average matrix of all neighbor's features including the node itself was obtained, followed by obtaining the weighted average matrix of low-dimensional nodes. In the second set of experiments, the average weighted matrix was forwarded to the GCN with two layers and the activation function for predicting the node class was applied. The results demonstrate that node classification with GCN can improve the performance of identifying communities on graph datasets.Originality/valueThe experiment reveals that the CommunityGCN approach has given better results with accuracy, normalized mutual information, F1 and modularity scores of 91.26, 79.9, 92.58 and 70.5 per cent, respectively, for detecting communities in the graph network, which is much greater than the range of 55.7–87.07 per cent reported in previous literature. Thus, it has been concluded that the GCN with node classification models has improved the accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have