Abstract

BackgroundIn addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain.ResultsWe have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker’s yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red.ConclusionsWe have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.

Highlights

  • In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass

  • Screening of S. cerevisiae strain collection for tolerance to inhibitors in spruce hydrolysate We first aimed at obtaining a strain with extremely high performance in terms of growth and fermentation directly in inhibitor-rich lignocellulose hydrolysate, since simultaneous tolerance to multiple inhibitors is important for high productivity in lignocellulose hydrolysates [28]

  • We screened 580 different S. cerevisiae strains first for the ability to grow in different concentrations of spruce hydrolysate

Read more

Summary

Introduction

In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Biofuels produced from non-food lignocellulosic biomass, such as agricultural and forest residues, municipal solid wastes and energy crops are believed to be an important sustainable solution for the future transport energy deficit and the green house gas emission problem [1]. Such lignocellulosic materials constitute the most abundant organic materials in the biosphere and represent a huge and renewable reservoir for transport energy [2]. Bioethanol production from lignocellulosic wastes, such as crop residues and sugar cane bagasse, and from cultivation of bioenergy crops, has the potential to contribute significantly to the replacement of fossil fuel for transportation purposes [6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call