Abstract

Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type. A maximum ethanol concentration of 29.04 g/L was produced from 71.31 g/L xylose, which was 58.95 % higher than that of the wild-type. This mutant also displayed significantly improved hydrolysate inhibitors tolerance and increased ethanol production from non-detoxified lignocellulosic hydrolysates. The ethanol yield, productivity and theoretical yield by TTC79 from sugarcane bagasse hydrolysate were 0.46 g/g, 0.20 g/L/h and 90.61 %, respectively, while the corresponding values for the wild-type were 0.20 g/g, 0.04 g/L/h and 39.20 %, respectively. These results demonstrate that S. shehatae TTC79 is a useful non-recombinant strain, combining efficient xylose consumption and high inhibitor tolerance, with potential for application in ethanol production from lignocellulose hydrolysates.

Highlights

  • With the increased interests in alternative energy, lignocellulosic biomass is attracting considerable attention as a potential low-cost feedstock for ethanol production

  • UV‐mutagenesis and selection of improved xylose‐fermenting mutants In order to increase ethanol production from xylose, S. shehatae 43CS was subjected to UV-C mutagenesis and selection of mutants by the 2,3,5-triphenyltetrazolium chloride (TTC) method

  • The TTC method has been applied to screen high ethanol-producing yeasts (Li et al 2012)

Read more

Summary

Introduction

With the increased interests in alternative energy, lignocellulosic biomass is attracting considerable attention as a potential low-cost feedstock for ethanol production. Lignocellulosic biomass is mainly composed of cellulose and hemicellulose. Cellulose is a linear polymer of glucose units linked by β-1-4-glycosidic bonds, whereas hemicellulose is a branched chain of pentoses Efficient conversion of xylose into ethanol is important for yeast strains used in lignocellulosic ethanol production. Saccharomyces cerevisiae is the best-known microorganism used for industrial ethanol fermentation, but this yeast does not naturally ferment pentose sugars to ethanol (Matsushika et al 2009). Several non-Saccharomyces yeasts, such as Scheffersomyces shehatae (Syn. Candida shehatae), Scheffersomyces stipitis (Syn. Pichia stipitis) and Pachysolen tannophilus, have been found to ferment both glucose and xylose to ethanol and have

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call