Abstract
Double beta plus decay is a rare nuclear disintegration process. Difficulties in its measurement arise from suppressed decay probabilities, experimentally challenging decay signatures and low natural abundances of suitable candidate nuclei. In this article, we propose a new detector concept to overcome these challenges. It is based on the first-time combination of hybrid and opaque scintillation detector technology paired with novel light read-out techniques. This approach is particularly suitable for detecting positrons (beta plus) signatures. We expect to discover two-neutrino double beta plus decay modes within 1 tonne-week exposure and are able to probe neutrinoless double beta plus decays at several orders of magnitude improved significance compared to current experimental limits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have