Abstract

To overcome the fact that the length of sentences is short and their content is limited, we regard words as independent text objects rather than features of sentences in sentence clustering and develop two co-clustering frameworks, namely integrated clustering and interactive clustering, to cluster sentences and words simultaneously. Since real-world datasets always contain noise, we incorporate noise detection and removal to enhance clustering of sentences and words. Meanwhile, a semisupervised approach is explored to incorporate the query information (and the sentence information in early document sets) in theme-based summarization. Thorough experimental studies are conducted. When evaluated on the DUC2005-2007 datasets and TAC 2008-2009 datasets, the performance of the two noise-detecting co-clustering approaches is comparable with that of the top three systems. The results also demonstrate that the interactive with noise detection algorithm is more effective than the noise-detecting integrated algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.