Abstract
Assessing vines’ vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features). The specific features were selected based on extensive literature research, including especially the fields of precision agri- and viticulture. To integrate only vine canopy-exclusive features into ML classifications, different feature types were extracted and spatially aggregated (zonal statistics), based on a combined pixel- and object-based image-segmentation-technique-created vine row mask around each single grapevine position. The extracted canopy features were progressively grouped into seven input feature groups for model training. Model overall performance metrics were optimized with grid search-based hyperparameter tuning and repeated-k-fold-cross-validation. Finally, ML-based growth class prediction results were extensively discussed and evaluated for overall (accuracy, f1-weighted) and growth class specific- classification metrics (accuracy, user- and producer accuracy).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have