Abstract

In this article, a real time optimal control strategy based on Pontryagin’s Minimum Principle (PMP) combined with the Markov chain approach is used for a fuel cell/supercapacitor electrical vehicle. In real time, at high power and at high speed, two phenomena are observed. The first is obtained at higher required power, and the second is observed at sudden power demand. To avoid these situations, the Markov chain model is proposed to predict the future power demand during a driving cycle. The optimal control problem is formulated as an equivalent consumption minimization strategy (ECMS), that has to be solved by using the Pontryagin’s Minimum Principle. A Markov chain model is added as a separate block for a prediction of required power. This approach and the whole system are modeled and implemented using the MATLAB/Simulink. The model without Markov chain block and the model is with it are compared. The results presented demonstrate the importance of a Markov chain block added to a model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.