Abstract

A new real time optimal control based on Pontryagin's minimum principle approach is proposed in this article. The optimal control problem is formulated as an equivalent consumption minimization strategy (ECMS), which must be solved using the Pontryagin minimum principle (PMP). The proposed approach manages the power required and sources, depending on the unknown driving cycle. It is implemented by using the Matlab/Simulink software and its development tools in real time without any study in the off time or drive cycle and driving conditions. This approach is simplified on two major equations, the first calculates the costate variable in real time and the second deduces the optimal fuel cell power. Also, this approach has to satisfy the power requirement, reduce the hydrogen consumption, and maintain the super capacitor state of charge (SOC) bounded for the unknown driving cycles. The simulation results obtained show that these objectives are satisfied using this approach, even though these results are suboptimal in the global drive cycle due at the unknown drive final time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.