Abstract
In this study, the forming behavior of fiber-metal laminates (FML) is investigated by a combination of different (in- and ex-situ) measurement techniques. Using FML-samples consisting of aluminum and carbon fiber reinforced polyamide-6, deep-drawing tests were employed at high temperatures. It can be concluded a conventional approach based on the forming limit curve (FLC) is not suitable to predict the failure initiated in the multi-material setup as principal strains cannot differentiate the strain in aluminum and CFRP and lack sensitivity to detect other relevant failure modes, such as debonding as well as debonding in between layers. To better understand the failure behavior due to forming of FML, an experimental setup, that based on the Nakajima-test, was developed, using in-situ acoustic emission testing, 3D digital image correlation as well as ex-situ X-ray computed tomography. The combined results from all methods helped to gain a deeper insight into how thermoplastic FML behave during deep drawing at elevated temperatures especially focusing on evolving damage inside the hybrid material
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.