Abstract
In forming AHSS, the lubricant must reduce the friction between die and sheet as well as the effect of heat generated from deformation and friction, especially in forming at high stroking rates. In this study, the effectiveness of stamping lubricants was evaluated by using the deep drawing and ironing tests. Various stamping lubricants were tested in forming of DP590 GA round cup samples. In these tests, the performance of lubricants was ranked via evaluation criteria that include punch force and the geometry of tested specimens. Deep drawing tests were conducted at two different blank holder forces, BHF (30 and 70 ton) at a constant ram speed (70 mm/s). The ironing tests were conducted to evaluate the performance of lubricants at higher tool–workpiece interface pressure than that is present in deep drawing. Polymer-based thin film lubricants with pressure additives (e.g. Lubricants A and B) were more effective than other lubricants as shown by the force (e.g. maximum punch force and applicable BHF without cup fracture) and geometry indicators (e.g. draw-in length, flange perimeter and sidewall thinning). The pressure and temperature distributions at the die–sheet interface were predicted by FE simulation of deep drawing and ironing tests. As expected, the value of interface pressure and temperature were maximum at the die corner radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.