Abstract
Feature extraction plays a vital role in iris recognition, affecting the performance of iris recognition algorithm strongly. In this paper, we present an individual recognition algorithm using fractal dimension based on fractional Brownian random field and lacunarity in feature extraction. Making use of the fractal feature of iris, such as self-similarity and random patterns, fractal dimension can extract texture information effectively. Lacunarity overcomes the limitation of fractal dimension that fractal sets with different textures may share the same fractal dimension value. The combination of fractal dimension and lacunarity makes the feature extraction more comprehensive and distinguishable. The experimental results show that this recognition algorithm can obtain great performance on CASIA 1.0 iris database
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have