Abstract

Seawater seasonal fluctuation results in its close interaction with freshwater in the coastal area, which may affect behavior of contaminants there. This study was conducted to explore the transport and transformation of soil colloid and associated Cr during freshwater and seawater alternating fluctuations by laboratory experiment and numerical simulation. Such a fluctuation brought downward migration of Cr from upper contaminated soil and induced reduction of Cr(VI) into Cr(III). An obvious increase of retained Cr(III) was observed at the lower layers of soil due to the reducing environment. More importantly, the colloids with average sizes between 800-1500 nm was formed during the fluctuation and mainly composed of microcline and Fe/Mn oxides minerals, which determined the Cr transport. Compared with the previous freshwater fluctuation, seawater fluctuations generated more and larger–sized colloids due to its high ionic strength. These colloids carried over 94% Cr in the effluent and Cr(III) accounted for over 95% of total Cr. A colloid-facilitated Cr transport modeling showed that the soil retained Cr decreased by about 14% after eight rounds of fluctuation on an actual soil-contaminated site scale. Our study provides insight for the understanding of geochemical process of Cr in the coastal area under freshwater and seawater fluctuation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.