Abstract

We report a measurement of the cold collision frequency shift in atomic hydrogen gas adsorbed on the surface of superfluid (4)He at T approximately < 90 mK. Using two-photon electron and nuclear magnetic resonance in 4.6 T field we separate the resonance line shifts due to the dipolar and exchange interactions, both proportional to surface density sigma. We find the clock shift Delta nu(c) = -1.0(1) x 10(-7) Hz cm(-2) x sigma, which is about 100 times smaller than the value predicted by the mean field theory and known scattering lengths in the three-dimensional case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.