Abstract
We investigate experimentally the quantum coherence of an electronic two-level system in a double quantum dot under continuous charge detection. The charge state of the two-level system is monitored by a capacitively coupled single quantum dot detector that imposes a backaction effect on the system. The measured backaction is well described by an additional decoherence rate, approximately linearly proportional to the detector electron tunneling rate. We provide a model for the decoherence rate arising due to level detuning fluctuations induced by detector charge fluctuations. The theory predicts a factor of 2 lower decoherence rates than observed in the experiment, suggesting the need for a more elaborate theory accounting for additional sources of decoherence. Published by the American Physical Society 2025
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have