Abstract

AbstractCoastal trapped waves (CTWs) that propagate poleward along the southwest African shelf potentially leak energy from lower latitudes into the Benguela Upwelling System (BUS). Thus, in addition to local winds, these waves provide an important remote forcing mechanism for the upwelling region. The present study aims at elucidating the nature of CTWs in the northern BUS. To this end, we make use of multisite velocity observations from the Namibian shelf (18°, 20°, 23°S) and examine the alongshore velocity signal for signatures of CTWs by means of wavelet methods. We found that a substantial amount of energy is concentrated within a submonthly to subseasonal frequency band (10–50 days). Based on the coherence and phase spectra of the alongshelf currents, we provide evidence for a predominantly southward phase propagation and establish typical time and length scales of CTWs in the region. It turns out that their properties differ significantly within a few hundred kilometers along the coast. A comparison of the results with theoretical dispersion curves shows that this difference may be explained by variations in the bottom topography. Finally, we investigate the coupling of the alongshore currents with the coastal and equatorial wind stress and highlight regions of potential wave generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call