Abstract

Using computational modeling, we establish a means of controlling structure formation in nanocomposites that encompass nanorods and a photosensitive binary blend. The complex cooperative interactions in the system include a preferential wetting interaction between the rods and one of the phases in the blend, steric repulsion between the coated rods, and the response of the binary blend to light. Under uniform illumination, the binary mixture undergoes both phase separation and a reversible chemical reaction, leading to a morphology resembling that of a microphase-separated diblock copolymer. When a second, higher intensity light source is rastered over the sample, the binary blend and the nanorods coassemble into regular, periodically ordered structures. In particular, the system displays an essentially defect-free lamellar morphology, with the nanorods localized in the energetically favorable domains. By varying the speed at which the secondary light is rastered over the sample, we can control the directional alignment of the rods within the blend. Our approach yields an effective route for achieving morphological control of both the polymeric components and nanoparticles, providing a means of tailoring the properties and ultimate performance of the composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.