Abstract

ABSTRACTThe solutions and the thin films of poly[9,9‐dioctyl‐2,7‐fluorene‐alt‐2,5–(3‐hexyl‐sulfonylthiophene)] (PFSO2T) and its binary blends with other nonconjugated polymers such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and ethylene vinyl acetate copolymer (EVA) can be prepared by different concentrations from a polymer solution. Binary polymer blends can increase the absorbance and photoluminescence intensities in the solid state due to nonconjugated polymers can act as dispersion agents which can reduce the interchain interaction or the aggregation of the conjugated polymers. Photoluminescence intensity of the thin films of fluorescent polymers blending with ethylene vinyl acetate copolymers exhibited six times higher than that of the neat fluorescent polymers. The PFSO2T/EVA binary blends reveal the least extent of optical degradation of around 20% compared to those binary blends in both absorption and emission intensities after the irradiation under the UV‐light for 20 h. The cross‐sectional morphology of fluorescent polymers blending with ethylene vinyl acetate copolymers reveals little aggregation and better phase separation among the other binary polymer blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44969.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call