Abstract

One of the challenges in creating high-performance polymer nanocomposites is establishing effective routes for tailoring the morphology of both the polymer mixture and the dispersed nanoparticles, which contribute desirable optical, electrical, and mechanical properties. Using computational modeling, we devise an effective method for simultaneously controlling the spatial regularity of the polymer phases and the distribution of the rods within this matrix. We focus on mixtures of photosensitive AB binary blends and A-coated nanorods; in the presence of light, the binary blends undergo a reversible chemical reaction and phase separation to yield a morphology resembling that of microphase-separated diblock copolymers. We simulate the effects of illuminating this sample with a uniform background light and a higher intensity, spatially localized light, which is rastered over the sample with a velocity v. The resulting material displays a periodically ordered, essentially defect-free morphology, with the A-like nanoparticles localized in lamellar A domains. The dynamic behavior of the rods within this system can be controlled by varying the velocity v and Γ2, the reaction rate coefficient produced by the higher intensity light. Specifically, the rastering light can drive the rods to be "pushed" along the lamellar domains or oriented perpendicular to these stripes. Given these attributes, we isolate scenarios where the system encompasses a complex hierarchical structure, with rods that are simultaneously ordered along two distinct directions within the periodic matrix. Namely, the rods form long nanowires that span the length of the sample and lie perpendicular to these wires in regularly spaced A lamellae. Hence, our approach points to new routes for producing self-organized rectangular grids, which can impart remarkable optoelectronic or mechanical properties to the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.