Abstract

Let [Formula: see text] denote the topological group of permutations of the natural numbers. A closed subgroup G of [Formula: see text] is called oligomorphic if for each n, its natural action on n-tuples of natural numbers has only finitely many orbits. We study the complexity of the topological isomorphism relation on the oligomorphic subgroups of [Formula: see text] in the setting of Borel reducibility between equivalence relations on Polish spaces. Given a closed subgroup [Formula: see text] of [Formula: see text], the coarse group [Formula: see text] is the structure with domain the cosets of open subgroups of G, and a ternary relation [Formula: see text]. This structure derived from G was introduced in [A. Kechris, A. Nies and K. Tent, The complexity of topological group isomorphism, J. Symbolic Logic 83(3) (2018) 1190–1203, Sec. 3.3 ]. If G has only countably many open subgroups, then [Formula: see text] is a countable structure. Coarse groups form our main tool in studying such closed subgroups of [Formula: see text]. We axiomatize them abstractly as structures with a ternary relation. For the oligomorphic groups, and also the profinite groups, we set up a Stone-type duality between the groups and the corresponding coarse groups. In particular, we can recover an isomorphic copy of G from its coarse group in a Borel fashion. We use this duality to show that the isomorphism relation for oligomorphic subgroups of [Formula: see text] is Borel reducible to a Borel equivalence relation with all classes countable. We show that the same upper bound applies to the larger class of closed subgroups of [Formula: see text] that are topologically isomorphic to oligomorphic groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call