Abstract

Asperó and Schindler have completely solved the Axiom [Formula: see text] vs. [Formula: see text] problem. They have proved that if [Formula: see text] holds then Axiom [Formula: see text] holds, with no additional assumptions. The key question now concerns the relationship between [Formula: see text] and Axiom [Formula: see text]. This is because the foundational issues raised by the problem of Axiom [Formula: see text] vs. [Formula: see text] arguably persist in the problem of Axiom [Formula: see text] vs. [Formula: see text]. The first of our two main theorems is that Axiom [Formula: see text] is equivalent to Axiom [Formula: see text], and as a corollary we show that Axiom [Formula: see text] fails in all the known models of [Formula: see text]. This suggests that [Formula: see text] actually refutes Axiom [Formula: see text]. Our second main theorem is that the [Formula: see text] Conjecture holds assuming [Formula: see text]. This is the strongest partial result known on this conjecture which is one of the central open problems of [Formula: see text]-theory and [Formula: see text]-logic. These results identify a fundamental asymmetry between the Continuum Hypothesis and any axiom which is both [Formula: see text]-expressible and which implies [Formula: see text], on the basis of generic absoluteness for the simplest of the nontrivial sentences of Third-Order Number Theory. These are the [Formula: see text]-sentences with no parameters. Such sentences are those which simply assert the existence of a set [Formula: see text] for which some property involving only quantification over [Formula: see text] holds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call