Abstract
The subgroup lattice of a group is a great source of information about the structure of the group itself. The aim of this paper is to use a similar tool for studying profinite groups. In more detail, we study the lattices of closed or open subgroups of a profinite group and its relation with the whole group. We show, for example, that procyclic groups are the only profinite groups with a distributive lattice of closed or open subgroups, and we give a sharp characterization of profinite groups whose lattice of closed (or open) subgroups satisfies the Dedekind modular law; we actually give a precise description of the behavior of modular elements of the lattice of closed subgroups. We also deal with the problem of carrying some structural information from a profinite group to another one having an isomorphic lattice of closed (or open) subgroups. Some interesting consequences and related results concerning decomposability and the number of profinite groups with a given lattice of closed (or open) subgroups are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.