Abstract

Distributed power-supply systems have become more widespread recently. Recent distributed systems, such as fuel cells, offer high energy-use efficiency because they generate heat or hot water and electric power simultaneously. However, to avoid global warming, carbon dioxide (CO2) from the exhaust gas has to be collected and separated, without emitting it to the atmosphere. We are investigating lithium silicate (Li4SiO4) (LS) because it has superior characteristics as a CO2 absorber. Aiming at the construction of a CO2 capture and separation system using LS, we are studying ways to process (capture and separate) the exhaust gas from distributed power-supply systems. We thought that the CO2 capture and separate system we should design must process exhaust gases with 30% CO2 concentration and 35 L/min flow rate and that it must capture and separate more than 50% of the CO2 contained in the exhaust gases. However, as a result of a preliminary estimation, it became clear that the volume of the assumed CO2 capture and separate system would be considerable. Therefore, we built a reduction model experimental setup with three reaction containers with three different aspect ratios. The results regarding container shape suggest that a long container would be advantageous..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.