Abstract

Three-dimensional integrated circuits (3D-ICs) bring about new challenges to chip thermal management because of their high heat densities. Micro-channel-based liquid cooling and thermal through-silicon-vias (TSVs) have been adopted to alleviate the thermal issues in 3D-ICs. Thermal TSV enables higher interlayer thermal conductivity thereby achieving a more uniform thermal profile. Although somewhat effective in reducing temperatures, they are limited by the nature of the heat sink. On the other hand, micro-channel-based liquid cooling is significantly capable of addressing 3D-IC cooling needs, but consumes a lot of extra power for pumping coolant through channels. This study proposes a hybrid 3D-IC cooling scheme which combines micro-channel liquid cooling and thermal TSV with one acting as heat removal agent, whereas the other enabling beneficial heat conduction paths to the micro-channel structures. The experimental results show that the proposed hybrid cooling scheme provides much better cooling capability than using only thermal TSVs, although consuming 56% less cooling power compared with pure micro-channel cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call