Abstract
Machine Learning (ML) involves making a machine able to learn and take decisions on real-life problems by working with an efficient set of algorithms. The generated ML models find application in different areas of research and management. One such field, automotive technology, employs ML enabled commercialized advanced driver assistance systems (ADAS) which include traffic sign recognition as a part. With the increasing demand for the intelligence of vehicles, and the advent of self-driving cars, it is extremely necessary to detect and recognize traffic signs automatically through computer technology. For this, neural networks can be applied for analyzing images of traffic signs for cognitive decision making by autonomous vehicles. Neural networks are the computing systems which act as a means of performing ML. In this work, a convolutional neural network (CNN) based ML model is built for recognition of traffic signs accurately for decision making, when installed in driverless vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.