Abstract

Nonepitaxial, high resistivity silicon has been used as a substrate for implementation of CMOS monolithic active pixel sensors (MAPS) designed for high precision minimum ionizing particle tracking. The readout electronics circuitry is integrated directly on top of such a substrate using a standard commercial CMOS process. In this paper, measurements of these devices using a high-energy particle beam are presented. Efficient and performing MIP tracking is demonstrated for both small (20 /spl mu/m) and large (40 /spl mu/m) pixel readout pitch. Radiation hardness that satisfies many future particle physics applications is also proven. These results show that the use of epitaxial substrate for MAPS fabrication is not mandatory, opening a much larger choice of possible CMOS processes in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call