Abstract

Transformation of CMB photons into light pseudoscalar particles at post big bang nucleosynthesis epoch is considered. Using the present day value of a large scale magnetic field to estimate it at earlier cosmological epochs, the oscillation probability of photons into light pseudoscalar particles with an account of coherence breaking in cosmological plasma is calculated. Demanding that the photon transformation does not lead to an exceedingly large CMB spectral distortion and temperature anisotropy, the constraints on the coupling constant of axion like particles to photons, $ g_{\phi\gamma} B \lesssim (10^{-15} - 10^{-12}) \textrm{nG}\times \textrm{GeV}^{-1}$, are found for the axion like particle mass in the interval $10^{-25}$ eV $\lesssim m_{\phi}\lesssim 10^{-5}$ eV, where $B$ is the strength of the large scale magnetic field at the present time. Our results update the previously obtained ones since we use the density matrix formalism which is more accurate than the wave function approximation for the description of oscillations with an essential coherence breaking. In the axion like particle mass range $10^{-25}$ eV $\lesssim m_{\phi}\lesssim 10^{-14}$ eV, weaker limits, by at least 2 orders of magnitude $g_{\phi\gamma} B \lesssim 10^{-11}\textrm{nG}\times \textrm{GeV}^{-1}$, are obtained in comparison with the wave function approximation. In the mass range $10^{-14}$ eV $\lesssim m_{\phi}\lesssim 10^{-5}$ eV, on the other hand, limits that are stronger, by more than an order of magnitude are obtained. Our results are derived by using upper limits on spectral distortion parameter $\mu$ and temperature anisotropy $\Delta T/T$ found by COBE and expected sensitivities by PIXIE/PRISM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call